Units
Some rules for natural units. The type that we use are fairly simplistic, the Planck natural units.
So what consequences does this have? As for \(c = 1\), time and distance are the same units, [E] = [m]. As for \(\hbar = 1\), this means that Energy are inversely related to distance or time. Some important numbers:
$$m_{proton} \sim 1 \textrm{Gev}$$
$$\alpha = \frac{1}{137}$$
$$m_{electron} \sim 10^{-3} \textrm{GeV}$$
$$\alpha_{G} = G_{N} m^{2}_{proton} \sim 10^{-39}$$
Such as,
$$E \sim - \frac{Z \alpha}{r} + \frac{1}{m_{electron} r^{2}}$$
$$r_{atom} \sim \frac{1}{Z \alpha m_{electron}}$$
$$r_{nucleus} \sim Z^{1/3} r_{proton} \sim \frac{Z^{1/3}}{m_{proton}}$$
$$\rho_{solid} \sim \frac{Zm_{proton}}{r^{3}_{atom}}$$
$$p_{e} \sim \frac{1}{r_{atom}} \sim m_{electron}$$
$$E_{atom} \sim \frac{Z \alpha}{r_{atom}} \sim Z^{2} \alpha^{2} m_{electron}$$
For Planetary stuff:
$$E_{gravity} \sim \frac{G_{N} M^{2}_{Planet}}{R_{Planet}}$$
$$P_{gravity} \sim \frac{G_{N} M^{2}_{Planet}}{R^{4}_{Planet}}$$
$$M_{Planet} \sim \rho_{solid} \times R^{3}_{Planet} \sim \frac{Zm_{proton} R^{3}_{Planet}}{r^{3}_{atom}}$$
Remember that any P_solid = E/V = F/A, and rho_solid = M/V